FST 3-4 Notes

Topic: Symmetries of Graphs

GOAL: Review the ideas of reflection and rotation symmetry, apply them to graphs of functions, and to the ideas of even and odd functions.

SPUR Objectives

- D Describe the effects of translations on functions and their graphs.
- E Describe and identify symmetries and asymptotes of graphs.
- I Recognize functions and their properties from their graphs.

Vocabulary

reflection-symmetric axis of symmetry line of symmetry symmetric about a point point symmetry even function odd function

The line of symmetry can be any line in the plane.

Center of symmetry for a figure = the center of rotation of 180 under which the figure is mapped onto itself.

Warm-Up

- 1. How many symmetry lines does a square have?
- 2. How many centers of symmetry does a square have?
- 3. How many symmetry lines does an isosceles trapezoid have?
- 4. How many centers of symmetry does an isosceles trapezoid have?

Activity 1

The diagram at the right shows half of a graph.

- Step 1 Copy the diagram. Draw the other half of the graph so that the result is point-symmetric about the origin. Label this half A.
- Step 2 Draw the other half of the original graph so that the result is symmetric with respect to the y-axis. Label this half B.
- Step 3 Draw the other half of the original graph so that it is symmetric over the x-axis. Label the graph C.
- Step 4 What symmetries does the union of graphs A, B, and C and the original graph possess?

The reflection image of (x, y) over the x-axis is

The reflection image of (x, y) over the y-axis is

The image of (x, y) under a rotation of 180° about the origin is

Symmetries of Graphs

Theorem (Symmetry over y-axis

A graph is symmetric with respect to the y-axis if and only if for every point (x, y) on the graph, (-x, y) is also on the graph.

Theorem (Symmetry over x-axis)

A graph is symmetric with respect to the x-axis if and only if for every point (x, y) on the graph, (x, -y) is also on the graph.

Theorem (Symmetry about the Origin)

A graph is symmetric to the origin if and only if for every point (x, y)on the graph, (-x, -y) is also on the graph.

x changes, y same

x same, y changes

X Changes, y changes

Proving that a graph has symmetry:

Example 1: Prove that the graph of $y = \sqrt{36 - x^2}$ is symmetric to the y-axis.

y-axis:
$$(x,y) \rightarrow (-x,y)$$

 $\sqrt{36-x^2} = \sqrt{36-(-x)^2}$
 $\sqrt{36-x^2} = \sqrt{36-x^2}$

yes, symmetric to y-axis

Is $y = \sqrt{36 - x^2}$ symmetric with respect to the x-axis? The origin? $X-axis: (x,y) \rightarrow (x,-y)$ $y=\sqrt{36-x^2}$ $y=\sqrt{36-x^2}$ $y=\sqrt{36-x^2}$ $y=\sqrt{36-x^2}$ $y=\sqrt{36-x^2}$ $y=\sqrt{36-x^2}$ $y=\sqrt{36-x^2}$ $y=\sqrt{36-x^2}$ No , Not symmetric to x-axis $y=\sqrt{36-x^2}$ Not symmetric to x-axis $y=\sqrt{36-x^2}$

Even and Odd Functions

Definition of Even Function

A function is an even function if and only if for all values of x in its domain, f(-x) = f(x).

Transformation $(x, y) \rightarrow (-x, y)$

* An even function has symmetry with respect to the y-axis.

Definition of Odd Function

A function f is an **odd function** if and only if for all values of x in its domain, f(-x) = -f(x).

Transformation $(x,y) \rightarrow (-x,-y)$

* An odd function has symmetry with respect to the origin.

Ex:
$$y=x^3$$

Example 2: Determine (algebraically, not graphically) whether the function

 $f(x) = x^3 - 5x$ is odd, even, or neither.

odd:
$$f(-x) = -f(x)$$

 $(-x)^3 - 5(-x) = -f(x)$
 $-(x)^3 - 5(-x) = -(x^3 - 5x)$
 $-x^3 + 5x = -x^3 + 5x$
yes, odd function

even: f(-x) = f(x) $(-x)^3 - 5(-x)$ $x^3 - 5x$ $-x^3 + 5x \neq x^3 - 5x$ No, No+ an even function

Example 3: Consider the function
$$H$$
 with $y = H(x) = \frac{3}{x-8} + 9.5$

a. Give equations for the asymptotes of its graph.

* Hint: Identify the parent function first!

* Hint: Identify the parent function first!

Symmetric to the origin point symmetric about (0,0)

point Symmetric about (8,9,5)